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Abstract

Structure-Aware private set intersection (sa-PSl) is a variant of PSI where Alice’s input set
A has some publicly known structure, Bob’s input B is an unstructured set of points, and Alice
learns the intersection AN B. sa-PSI| was recently introduced by Garimella et al. (Crypto 2022),
who described a semi-honest protocol with communication that scales with the description size
of Alice’s set, instead of its cardinality. In this paper, we present the first sa-PSI protocol secure
against malicious adversaries.

sa-PSl protocols are built from function secret sharing (FSS) schemes, and the main challenge
in our work is ensuring that multiple F'SS sharings encode the same structured set. We do so
using a cut-and-choose approach. In order to make FSS compatible with cut-and-choose, we
introduce a new variant of function secret sharing, called derandomizable FSS (dFSS).

We show how to construct dFSS for union of geometric balls, leading to a malicious-secure
sa-PSl protocol where Alice’s input is a union of balls. We also improve prior FSS constructions,
giving asymptotic improvements to semi-honest sa-PSI.

1 Introduction

Private Set Intersection (PSI) enables two parties Alice (with private input set A) and Bob (with
private input set B) to learn the intersection AN B of their sets, while ensuring that no party learns
anything beyond the intersection. All standard PSI protocols have communication and computation
complexity proportional to the cardinality of the input sets [HFH99a, PSWW18, PRTY20, CM20,
GPR*21, GMR*21, RS21].

Structure Aware Private Set intersection, proposed by Garimella et al. in [GRS22], is a variant
of PSI where one party’s input set has a publicly known structure. Formally, Alice has input A € S
from a known family S of sets, Bob has input B (an arbitrary set), and Alice learns A N B. The
goal is for the communication cost to scale with the description size of A rather than its cardinality.
The main result in [GRS22] is a generic framework that reduces structure-aware PSI to the task of
designing an efficient (in terms of share size and evaluation) function secret sharing (FSS) scheme
for the same family S of sets.

Structure-aware PSI is a powerful idea; suppose the publicly known structure is a union of n
disjoint, fixed-radius balls in some distance metric. PSI of such sets solves the problem of fuzzy PSI,
where Alice and Bob can identify which pairs of their points are within some small fixed distance
of each other. Structure-aware PSI would have communication that scales with the description size
n instead of the total volume of the balls.

*Authors partially supported by NSF award 2150726.



1.1 Owur Contributions

The protocol construction in [GRS22] is secure in the semi-honest model. Our main contribution is
to carefully extend their framework for structure-aware PSI to be secure in the presence of malicious
adversaries. We incorporate a cut-and-choose style check to thwart any malicious behavior. For
this, we require additional properties from the underlying boolean FSS and introduce a new variant
called derandomizable function secret sharing (dFSS). We formally characterize dFSS and show new
constructions.

Intuition behind Derandomizable FSS In our protocol (following the outline of [GRS22]) the
receiver Alice is supposed to generate many FSS sharings of her PSI input set. A malicious Alice
may generate invalid FSS shares, and/or generate FSS sharings of inconsistent sets. We want to
prevent and detect this kind of misbehavior, using a cut-and-choose technique.

In a cut-and-choose, we expect Alice to generate more FSS sharings than needed, then convince
Bob that most of them were generated correctly, by “opening” them — i.e., by revealing both of
its shares. However, the F'SS shares are shares of Alice’s private input, so revealing both shares has
the unpleasant side-effect of revealing Alice’s private input.

We avoid this issue with the following idea: Instead of generating F'SS shares of her input, Alice
can generate shares of some suitable “random objects R;.” Revealing both shares reveals only R;,
and not Alice’s input.

But our protocol requires F'SS shares that represent Alice’s input. Hence, we require an FSS
scheme with the following property: Given one FSS share of R;, and given a public “offset” value
A — R;, the two shareholders compute secret shares of an output that corresponds to the object A,
not the object R;. We call such an FSS scheme derandomizable.

Derandomizable FSS allows Bob to check that F'SS shares are well-formed (by opening some of
them in a cut-and-choose). However, it does not immediately help Bob check that different FSS
shares encode the same object — we address that in the details of our protocol. This property of
derandomizing FSS keys was first observed by Boyle et al. [BGI19] for the class of point functions,
where they use this idea to reduce online complexity of secure 2 party computation of certain types
of F'SS gates. We formalize this derandomizable property of FSS and design it for a wider collection
of sets.

Malicious-secure, structure-aware PSI We show a malicious-secure structure-aware PSI pro-
tocol in the UC model, given a dFSS for S. Our protocol requires additively homomorphic com-
mitments and committed oblivious transfer. The communication complexity of the protocol is
O(k(oc +d+ K+ |BJ)), where o is the share size of dFSS, d is the description size of a structured
set, k is the security parameter.

New dFSS definition and techniques. We introduce the notion of derandomizable bFSS
(dFSS) and present the following generic transformation results. Given dFSS for collections of
sets 81, Se we can construct:

e dFSS for complement set S| = {S | S € 51}

e dFSS for cross product of the sets S x Sy

e dFSS for point function tensor product PT ® §; = {(U \ {z}) x S|z € U, S € S}, where

PT represents a family of singleton sets/point functions over U.

Next, we present a new spatial hashing technique for constructing dFSS for (two classes of) disjoint
union of sets:



construction dFSS? share size eval cost

disjoint balls: basic FSS [BGI16] yes O(nku?) O(nu?)
disjoint balls: [GRS22] no O(n(4logé)?k)  O((2logd)?)
disjoint balls: ours yes  O(nk(ud + (logd)?)) O((2log 6)?)
balls with centers > 46 apart: [GRS22] no O(nd2%k log 0) O(dlogd)
balls with centers > 8) apart: ours  yes O(ndk log 6) O(dlog )
axis-disjoint balls: [GRS22] no O(ndk log ) O(dlog )

Figure 1: FSS share size for n balls ({s norm) of radius ¢ in d dimensions, over wu-bit integers.
Evaluation time is for evaluating on one point.

structured input set Communication cost (in GB)
[GRS22] Ours
(semi-honest secure) (malicious secure)
disjoint union of ¢, balls 101.1 662.4
union of balls with centers > 86 apart 13.2 85.6

Figure 2: PSI concrete communication cost comparison with [GRS22]. Here Alice’s structured set
(of size ~ 107) contains n = 2700 /, balls in 2 dimensions, each with radius § = 30 in universe of

size 232 along each dimension, and Bob inputs an unstructured set of size 10°.

e Union of disjoint §—radius balls in /s, metric space. Our share size is O(nk(ud + (log§)?)),
where k is the security parameter, [2“]d is the input domain (i.e., d-dimensional points with
u-bit coordinates) and n is the number of balls.

e Union of §—radius balls with pairwise distance between the balls’ centers > 86 in /., metric
space. Our share size is O(knud).

Finally, our new dFSS constructions can be used to improve the semi-honest sa-PSI protocol
[GRS22]. If Alice’s input is the union of n disjoint balls of fixed radius § in ¢ metric space,
we achieve the following improvement in communication -

e O(xk(n(4logd)? + |B|)) — O(k(nu + n(log 6)? + |B|)), where the universe set is [24]%.

e O(k(nd(log6)? 4+ |B|)) — O(k(nud + |B|)), when input balls have pairwise distance > 86,

A more detailed comparison of FSS evaluation cost and share size is presented in Figure 1. Using
these improved dFSS constructions for union of £, balls, our malicious secure structure-aware PSI
protocol has only a 6 — 7x communication overhead compared to the semi-honest secure protocol
of [GRS22| (see Figure 2).

1.2 Related Work

Early solutions [Mea86, HFH99b] for 2-party PSI are based on Diffie-Hellman (and secure against
semi-honest adversaries). In the last few years, we have seen many protocol paradigms emerge,
based on techniques like key agreement [HFH99a, DT10, JL10], bloom filters [DCW13, RR17a],
oblivious polynomial evaluation via additively homomorphic encryption [KS05, DMRY11], circuit-
based [HEK12, PSWW18, PSTY19, GMR"21], vector oblivious linear function evaluation [RS21]
to name a few.



However, truly practical and scalable solutions for PSI are mostly designed in the OT paradigm.
Their efficiency comes from OT extension [IKNPO03], which reduces the marginal cost of each OT
instance to cheap symmetric-key operations (e.g., calls to AES). These OT instances enable the
comparisons necessary for PSI. Pinkas, Schneider, and Zohner [PSZ14] were the first to propose
basing PSI directly on OT. The approach was later refined in a series of works [PSSZ15, KKRT16,
RR17b, PRTY19, PRTY20, CM20, GPR'21, RS21].

Structure- Aware PSI Recently, Garimella et al. [GRS22] introduced structure-aware PSI, where
Alice has structured input and Bob has an unstructured set of points and the communication
cost of the protocol scales with the description size instead of cardinality of the structured set.
Note that silent OT [BCGI18, BCGT19b, BCGT19a, SGRR19, CRR21], which allows parties to
generate essentially unlimited oblivious transfer instances with no communication, does not solve
the problem of structure-aware PSI. Silent OT generates only random OT correlations, which must
be converted to chosen-input OT instances using communication [Bea95], which is proportional to
the cardinality of sets.

Malicious model To the best of our knowledge, the first specialized protocol (i.e., with less
than quadratic complexity) for PSI in the malicious setting is due to [FNP04]. Other approaches
proposed for malicious 2-party PSI, use techniques like Diffie-Hellman key agreement, oblivious
linear function evaluation and Homomorphic Encryption (e.g., [DMRY09, HL08, JL10, DKT10,
GN19]). More recent works [RR17a, RR17b, PRTY20, RS21, GPR™21] use OT extension for
malicious security.

FSS Function secret sharing was first introduced by Boyle et al. [BGI15], who proposed efficient
FSS constructions for point functions, comparison functions and a few other interesting classes.
These original FSS constructions were further optimized in a sequence of works for point func-
tions, multi-point functions, comparison functions and d dimensional intervals [BGI16, BCG'21,
BGIK22]. [Weak]| Boolean FSS bFSS was introduced by Garimella et al. [GRS22], and they present
efficient weak bFSS constructions for union of disjoint £,.-balls and union of d-radius £..-balls with
pairwise distance > 4§. The new spatial hashing based dFSS constructions we introduce exponen-
tially improve on these bFSS constructions.

A number of works from the literature study the problem of verifiable function secret sharing
- which allows the two parties holding FSS keys to verify their keys were correctly generated by
the Share function [BGI16, dCP22, BBCG'21]. However, all these works are limited to studying
verifiable F'SS for only point and multi-point functions, and for a special form of comparison/interval
functions. Furthermore, to verify that these keys are correct with respect to an input domain D
requires computational complexity proportional to |D| - making this verification cost high for a large
domain size. In our malicious secure PSI framework, we verify if the keys are correctly generated
with communication complexity proportional to just the FSS share sizes, instead of their domain.

Boyle et al. [BGI19] study a notion of derandomizable FSS for the families of offset functions.
This class includes point, comparison, interval, and d-dimensional interval functions. Our notion of
dFSS requires a similar derandomizability property as well as an “extractability” property (defined
in Section 3). Our definitions and constructions are not limited to families of offset functions. E.g.,
union of disjoint, fixed-radius d-dimensional balls is not an offset family.

2 Preliminaries

2.1 Secure Computation in the presence of Malicious Adversaries

We define security in the ideal / real world paradigm. The ideal world assumes a trusted third
party that computes our chosen functionality f given the parties’ choice of inputs. In the real



protocol execution, the parties interact with each other according to some prescribed protocol (II)
to correctly compute the functionality f. When a malicious adversary corrupts a specific party,
it learns its entire state, set of all received messages during execution and can cause the party to
deviate arbitrarily (from expected protocol behavior) in its interaction with the honest party. In
our setting, we assume the malicious adversary statically corrupts either the sender or the receiver
at the start of the protocol. Informally, a protocol is considered secure if every attack in the real
world can be simulated in the ideal world implying that the adversary never learns more than what
he sees in an ideal execution of the protocol.

Definition 1. A protocol 11 is said to securely compute f in the presence of malicious adversaries
if for every probabilistic polynomial time (PPT) adversary A, there is a probabilistic polynomial
time simulator Sim such that

Pr[IL, 2, Al ~ Pr[F, Z,Sim];,

real ideal

i.e. no probabilistic polynomial time distinguisher Z has non-negligible advantage.

2.2 Committed Oblivious Transfer

The functionality is presented in Figure 3. A sender inputs a pair of messages mg, m1, a receiver
inputs a bit b, and the transfer function outputs m; to the receiver. The open function can be
invoked by the sender to reveal both messages mg, m1 to the receiver.

Parameter: message length [

Choose:
1. Receive (choose, id, b) from the receiver, where b € {0,1}.
2. If no message of the form (choose,id,.) is present in memory, store (choose,id,b) and
send (choose, id) to the sender.

Transfer:
1. Receive (transfer,id, mg, m1) from the sender, where mg, m; € {0, 1}
2. If no messages of the form (transfer,id, mg, m1) is present in memory and a message of
the form (choose, id, b) is stored, send (transfer,id, m;) to the receiver.

Open:
1. Receive (open,id) from the sender
2. Output stored message (transfer,id, mg, m1) to the receiver

Figure 3: Ideal functionality FcoTt

2.3 Homomorphic Commitment Scheme

The functionality is presented in Figure 4. The functionality allows a sender and receiver to commit
and open to messages. The functionality is additively homomorphic so it can reveal / open the
difference of any two committed values within a session.

2.4 Cuckoo Hashing

A cuckoo hash table C is a randomized data structure of size m that is used to encode a set of
elements (key-value pairs) X of size n parametrized by three hash functions H = (Hy, He, H3) with



Parameter: Message space represented by some field F.
Fheom interacts with a sender Ps, a receiver P, and an adversary S and it has the following
three phases:

Commit:
1. Upon receiving a message (com, sid,idx, Ps, P.,m) from Ps, where m € F, record the
tuple (idz, Ps, P,,m) and send the message (receipt, sid, idz, Ps, P,) to P, and S.
2. Ignore any future commit messages with the same idx from P; to P,.
3. If a message (aborts, sid, idx) is received from S, the functionality halts.

Open:
1. On receiving a message (reveal, sid, idz) from Ps: If a tuple (idx, Ps, P, m) was previously
recorded, then send message (ok, sid, idx, Ps, P.,m) to P, and S. Otherwise, ignore.
2. On receiving a message (reveal, sid,idxg,idzy) from  Ps: If  tuples
(idxo, Ps, Pr,mq), (idxy, Ps, P,,m;) were previously recorded, then send message
(ok, sid, idxg, idz1, Ps, Py, (mg — m1)) to P, and S. Otherwise, ignore.

Figure 4: Ideal functionality Frcom

Hi,Ho, Hs : {0,1}* — [m]:
C + Cuckoofy, y, n, (X)

A cuckoo table C = (Cy,...,Cy) holds every element of X where for each (z,y) € X there
is some 4 € {1,2,3} such that Cj,(,) = y. Some positions of C will not matter, corresponding to
empty bins. We pick the parameter m such that every element from X finds a place in the cuckoo
table except with negligible probability. Concretely, we set m = 1.27n.

2.5 Function Secret Sharing

Boolean Function Secret Sharing [GRS22]. Weak boolean function secret sharing (p, p)-bFSS
is a relaxation of the standard FSS definition, it can allow for FSS evaluation with output length
p and a bounded false positive rate p. In this work, we don’t allow for false positives and only
consider p-bFSS with output length relaxation. Our full definition is in Appendix A.

3 Derandomizable bFSS

In this work, we introduce derandomizable FSS, a new variant of weak boolean FSS with some
additional properties. First, we always translate our input into a group G via an encoding function.
A given input can have multiple encodings, however, all of them must decode back to the same
input.

Definition 2 (Encoding Function/Scheme). For a group G, a family of sets S, we can determin-
istically encode a set Encode: S — G, if there exists Encode™ : G — S such that:

Pr (Encode_l(Encode(S)) =5)=1

In our p-dFSS definition, RShare generates key shares for a uniformly random element R € G
from the encoding space. The evaluation function DEval takes an additional parameter offset € G
and evaluates the input on key shares corresponding to group element (offset + R) where + is
the group operation. Finally, we require that we can extract the group element (which encodes



the structured input) from the key shares. These properties will jointly enable randomizing and
de-randomizing our structured input required for our malicious-secure sa-PSI protocol.

Definition 3 (Derandomizable bFSS syntax). Let S C 24 denote a family of sets over input domain
U =G, an encode function Encode : S — G and security parameter k. A 2-party derandomizable
p-dFSS scheme with algorithms (RShare, Extract, DEval) has the following syntax:
o (ko, k1, R) < RShare(1%): is a randomized algorithm that outputs a uniformly random group
element R € G and its associated (ko, k1) key shares.
e R« Extract(ko,k1): is a deterministic function that takes key shares as input. It outputs the
group element R associated with the ko, k1 (output by RShare).
o Yiax < DEval(1% | idx, kigx, ©, offset): is a deterministic algorithm with inputs security param-
eter, party index idx € {0,1}, the key share kigy, the input point of evaluation x € U and a
group element offset offset € G. It outputs a string yiqgx € {0, 1}7.

Definition 4 (Derandomizable bFSS security). A derandomizable 2-party p-dFSS scheme (RShare,
Extract, DEval) for S C 24 is secure if it satisfies the following conditions:
e Correctness for yes-instances: For any S € S, x € S:

(ko, k1, R) < RShare(1%)
Pr|yo @y =0° | yo < DEval(1%, ko, x, Encode(S) — R) | =1 — negl.(k)
y1 < DEval(1%, ky,z, Encode(S) — R)

e Correctness for no-instances: For every set S €S, x €U\ S:

(k(), k‘l, R) — RShare(l”)
Pr | yo®y1 #0° | yo «+ DEval(1%,0, kg, z, Encode(S) — R) | =1
y1 < DEval(1%,1, k1, x, Encode(S) — R)

e Privacy: For every set S € S and index idx € {0,1} there exists a simulator Sim such that
the following distributions are computationally indistinguishable in the security parameter:

(ko, k1, R) < RShare(1%)

return (kidxa Encode(S) _ R) =k Slm(l ,ldX)

o Extractability: there exists an efficient function Extract, such that for any pair of strings
ko, k1 and Re G

L # R« Extract(kg, k1) <= 3r such that (ko, k1, R) < RShare(1%)

(<) For every output (ko, k1, R) of RShare, Extract outputs R given the ko, k1 key shares.

(=) For every output R of Extract, there exists randomness r such that RShare will output
(ko, k1, R).

Definition 5. A derandomizable 2-party p-dFSS scheme is called a strong dFSS if p =1, else its
referred to as a weak dFSS.

Definition 6. A derandomizable 2-party p-dFSS scheme for a collection of sets is said to have
pseudo-random keys if the output of the simulator in Definition 4 is pseudo-random.



4 Malicious-Secure Structure-Aware PSI

In this section, we discuss the main ideas of our malicious-secure sa-PS| protocol. We provide a full
protocol description, proof of security and an asymptotic analysis of our communication cost.

4.1 Overview and Intuition

Let’s start by reviewing the semi-honest sa-PSI protocol [GRS22]. The receiver (Alice) generates

independent F'SS sharings (k:(i), k&z)) < Share(A) of her structured input A and the sender (Bob)
samples a uniformly random string s < {0,1}". Now, both parties run  instances of OT so that

Bob learns one of the two FSS shares ky(j) = kg:) for each of his choice bits s;. Bob can define an
OPRF function as:

F(z) = H (Eval(kE), z), Eval(k?), 2), ..., Eval (£, x)),

where H is a random oracle. Bob can compute F(z) for any value x of his choice. On the other
hand, F' is defined using Bob’s choice bits s, in such a way that Alice can compute F'(x) only when
x € A. When x € A, Bob’s choice bits have no effect — i.e., Eval(k:(()z),w) = Eval(kgz),x) — by the
property of the p-bFSS. In this case, Alice can compute F(x) as H(Eval(kél), x), ..., Eval(kzéﬁ), x))
If © ¢ A, then each of Bob’s choice bits changes one of the argument terms to H, so Alice would
need to correctly guess all k of Bob’s choice bits in order to call H on the correct input to compute
F(z). Now we have a PSI protocol in the usual way [FIPRO05]: Bob sends {F(b) | b € B} to Alice,
who can only recognize those OPRF outputs that correspond to her input set A.

What goes wrong with a malicious adversary? A corrupt Alice can send incorrect or inconsistent
p-bFSS key shares to the OT instances. Bob would like to verify that Alice’s OT inputs are well-
formed FSS shares consistent with her chosen structured input. A potential approach is cut-and-
choose, where Bob challenges Alice with a set of randomly chosen indices to “open” (learn both
key shares) and “check” (if it correctly encodes Alice’s input), and aborts if any of the opened
key shares are inconsistent. However, observe that a direct application of cut-and-choose violates
Alice’s input privacy. Bob can re-construct the input from any pair of well-formed p-dFSS keys
he learns during the “open” phase. To get around this issue, we introduce a new variant of weak
boolean FSS called derandomizable FSS (Section 3) with some additional useful properties.

In a dFSS scheme, the key sharing phase is randomized to generate shares of a uniformly random
element (say R) from the same family of sets as the input (A). The evaluation step is modified
to include an “offset” or ”correction” (A — R) to de-randomize the evaluation from an FSS share
of R to an FSS share of the chosen input (A). Within our PSI context, Alice (with chosen input
A € S) will now generate ¢ (> k for cut-and-choose) dFSS shares of uniformly random elements
R; € S from the same family of sets as her input. Bob picks some subset of indices (OpenSet) and
checks if the shares are well-formed and correspond to an element from S, otherwise aborts. All the
unopened OTs (termed EvalSet in the protocol) will be used to define the OPRF function, similar
to the semi-honest protocol.

Alice sends “offset” (A — R;) for all indices (in EvalSet), so that Bob can de-randomize his
received FSS shares to Alice’s input. However, Alice can still cheat by de-randomizing different
R;’s to different A values. To fix this, Alice must initially commit to her input encoding and all the
randomly sampled R; sets, under an additively homomorphic commitment scheme. Later, during
the evaluation stage, she homomorphically decommits to the required “offsets”. Now, Bob can be
convinced that all offsets de-randomize the FSS shares to the same underlying input.



4.2 Protocol

Now, we take a closer look at the protocol and highlight some useful aspects.

Objects and Encodings We have written the “offset” value A — R;, which implies that there is a
group structure over the set of objects. For this reason, we make an important distinction between
the primary objects (sets of points) and encodings of those objects. For example, if the set of
points is a geometric ball, then a good encoding may be the coordinates of the ball’s center. The
group operation on encodings is vector addition of points in the ambient geometry.

The encoding of a single ball is naturally deterministic, but in other settings an object may
have many valid encodings. Our dFSS construction for union of balls is such an example. Given
n balls, we assign them to one of m bins using cuckoo hashing. Even with the hashing functions
fixed, there are typically several legal ways to assign objects into bins using cuckoo hashing. The
encoding of the set is (essentially) a vector of length m, where the ith component holds the center
of the ball assigned to the ith bin (or a dummy center).

Most of the reasoning about our FSS constructions is in the “encoding domain.” The PSI
protocol can force a corrupt Alice to use some element of the encoding domain as her PSI input.
However, not all such elements are actually encodings of a valid set. Consider the example where
the valid sets are disjoint unions of n balls. Our FSS construction maps those n balls to m bins,
and we must have m = (1 + O(1)) - n > n for cuckoo hashing to succeed with high probability for
the honest parties. However, there are values in the encoding space that correspond to the union
of up to m balls. Therefore, the choice of encoding determines if an adversary is able to have more
balls in its input set than the honest parties.

Cut-and-Choose In Figure 6 we present our cut and choose parameters for £ OT instances. We
allow Bob to check ¢; OT instances (OpenSet) and evaluate on the remaining ¢» OT instances
(EvalSet) where £ = ¢1 + ¢5. A corrupt Alice wins the cut-and-choose if all £; OTs are correct and
less than x OT instances of EvalSet are correct (argument to H to compute the OPRF() has low
entropy). In more detail, we maximize the number of indices ¢ that are faulty so that less than
OT instances of EvalSet are correct, and count the number of ways to pick OpenSet such that has
no bad indices ¢ out of the total number of ways to pick OpenSet. Both these requirements must
be met with negligible probability in the security parameter.

('a)
c.c>lo—K
1l
OPRF notation For ease of presentation, we slightly modify our notation for OPRF outputs
F(z). Because of cut-and-choose, only a subset of FSS instances are used for evaluation. We write

the argument to the hash function H as a set rather than a string:
F(z) = H(ﬂc; {(i, DEval(k b, offset;)) | i € EvalSet})

When we write an expression like this, we mean that the items of the set (pairs) are serialized into
a string in a canonical way — i.e., by sorting the pairs by their first component.

Now, we present the full details of our framework for malicious-secure Structure-Aware PSI
in Figure 7 and prove that our protocol securely realizes our ideal functionality in Figure 5. The
protocol is in the random oracle model and makes calls to the ideal functionality for Committed
OT (Fcot) and an Additively Homomorphic Commitment scheme (Frcom)-



Parameters: Given a family of subsets S C 2 over the universe U and an encode function
Encode: § — G.

Functionality:
1. If Alice is honest, then receive from her an input set A € §. Otherwise if Alice is corrupt,
receive from her an encoding E € G and define A = Encode™(E).
2. Receive input B C U from Bob.
3. Give output AN B and |B| to Alice.

Figure 5: Ideal functionality Fy,ps for Structure-Aware PSI in malicious model.

Parameters:

e Computational security parameter x and statistical security parameter A
Family of sets S with corresponding p-dFSS scheme (RShare, Encode, DEval)
Random oracle H : {0, 1}* — {0, 1}~
Committed oblivious transfer functionality Fcot (Figure 3)

Additively homomorphic commitment functionality Fycom (Figure 4)
l—c
¢ = ({1 + £2) OT instances where maxc..~s,—x ((Z}))
£

(41,42) = (60,220) suffices for (k,\) = (128, 40).

< 1/2*. As a concrete example,

Figure 6: Parameters for Malicious-Secure Structure Aware PSI

4.3 Security against Malicious behavior

Theorem 7. Given a p-dFSS scheme for a family of subsets S C 2Y over input domain U. Protocol
Tsa—ps1 (in Figure 7) UC-securely realizes Fsapsy in the presence of a malicious adversary in the
FcoT, Hcom—hybrid random oracle model.

Proof. Bob is corrupt. In the ideal world execution, the simulator does the following steps to
simulate a corrupt Bob’s protocol view -

e Simulator observes Bob’s queries to Fcom in step 1 and extracts OpenSet.

e Send acknowledgements (receipt, sidg, ¢, P,, P,) and {(receipt, sid,, i, Py, Py) | @ € [¢]} to sim-
ulate the ideal functionality Fycom responses in step 2.

e Observes Bob’s choice bit string s to the Fcot ideal functionality. For the it" OT instance -

— If ¢ € OpenSet: sample (k(()i), k:gi),Ri) < RShare(1%).

— If i ¢ OpenSet: call the simulator (k:ff) = k;g?,offseti) + Sim(1%,s;) that guarantees
privacy of the underlying p-dFSS scheme.

— Send (transfer, i, Y = kgi)) to Bob on behalf of FcoT.

— Include (ok, sidg, ¢, i, P,, Py, offset;) in the set of messages to Bob in step 7 of the protocol.

e For i € OpenSet: send (transfer, i, k(()i), k:gl)) and acknowledge (ok, sid,, i, Py, Py, R;) to Bob.
e Let OPRF(b) = H(b; {(4, DEvaI(la(kZ)7 b, offset;)) | i € EvalSet} ). The simulator observes Bob’s
queries to the random oracle and defines set

B = {b | Bob made a random oracle query of the form H(b,-) and OPRF(b) € B}

where B is the message sent by Bob in step 8.
e Simulator sends Bob’s effective input B to Fss-ps). The functionality returns A N B to Alice.

10



Inputs: Alice (P,) has input A € S and Bob (F;) has input B.

Protocol:
1. Bob does the following -

e Picks a string s < {0, 1} uniformly at random.
e Picks indices OpenSet C [¢] and sends (com, sidy, 0, Py, P,, OpenSet) to Fcom-

2. Alice makes ¢ calls to RShare(1%) from the p-dFSS scheme. Then commits to the gener-
ated sets and an encoding of her input.
o Foric [(): do (k{”, k", R;) + RShare(1%).
e For i € [{]: send (com, sidg, i, Py, Py, R;) to Frcom-
e Alice sends (com, sidg, ¢, Py, Py, Encode(A)) to Fycom-

3. Alice as OT sender and Bob as OT receiver run ¢ (parallel) instances of committed
oblivious transfer Fcor (Figure 3). In the i instance -

e Alice inputs the keys shares. She sends (transfer, i, k‘(()i), k:gl)) to FcoT-

e Bob sends (choose, i, s;) to Fcor which returns (transfer, 1, kff) = k‘g))

4. Bob sends (reveal, sidy, 0) to Frcom to reveal OpenSet to Alice.

5. If Alice receives (ok, sidy, 0, Py, P,, OpenSet) from Fycom, then -

e For i € OpenSet: send (open,i) to FcoT; Bob learns (k:[()i), k:gl))

e For i € OpenSet: send (reveal, sidg, i) to Fcom; Bob can now learn R;.
6. Now, Bob does the following check -
e For i € OpenSet: R; Z Extract(k‘(()i), k{”) and aborts if function call fails.

7. Alice reveals the offsets to Bob -

e For all j € EvalSet: send (reveal, sid,, ¢, j) to FHcom-
e Bob receives (ok, sidy, ¥, j, Py, Py, offset;), offset; = (Encode(A) — R;).

8. Bob computes B , defined below, and sends it (permuted uniformly at random) to Alice.
Set D is serialized to a string by sorting its elements by their first components.

B= {H(b; D) ‘ be B}; where D = {(i, DEval(k”, b, offset;)) | i € EvalSet}

9. Alice computes the PSI output as

{a e A ( H(a; {(i,DEval(k{", a, offset;)) | i € EvalSet}) € E}

Figure 7: Protocol description for Structure-Aware PSI in the Malicious model.

Now, we show a sequence of hybrids from the real-world to ideal world execution.
e Hybrid 0: We start with the real interaction where Alice interacts with her actual input A.
e Hybrid 1: Extract OpenSet from Bob’s queries to Fcot. In this hybrid, look at indices
i ¢ OpenSet : replace (kéi),kgi),Ri) <+ RShare(1%) with (kg?,offseti) + Sim(1%,s;) a call to
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simulator of the underlying dFSS scheme. Here, Bob’s input s; to FcoT is used to simulate
k:gf) (FcoT output sent to Bob) and offset; (sent to Bob in step 7). The simulator knows the
cut-and-choose indices OpenSet in advance, and hence it will never need to show the “other
FSS share” for these indices. By the privacy property of the dFSS scheme (definition 3), this
hybrid is indistinguishable from the real interaction.

Hybrid 2: In this hybrid, we replace the actual interaction with Fycom in step 2 by sending
acknowledgements (receipt, sid,, ¢, P,, P,) and (receipt, sid,, i, P,, P,) for all i € [¢] to Bob, so
that the actual values being committed are not used in this step. This hybrid is identically
distributed with the previous hybrid since Alice is honest.

Hybrid 3: Now, we modify how honest Alice computes the output of the protocol. Let
OPRF(b) = H(b; {(i, DEval(k:g), b, offset;)) | i € EvalSet} ). We track the queries made by Bob
to the random oracle OPRF(b) until Bob sends B in step 8 of the protocol. Now we define
set -

B = {b | Bob made a random oracle query of form H(b,-) and OPRF(b) € B}

and change Alice’s output to AN B.
It remains to show that for any a € A it belongs to modified output A N B if and only if it
belongs to AN B, except with negligible probability. We have the following cases -
1. a € B: H(a; {(4, DEval(k{", a, offset;)) | i € EvalSet} ) =
H(a; {(i, DEvaI(k‘(()Z), a,offset;)) | i € EvalSet}) if and only if a € AN B by the correctness
property of the dFSS scheme.

2. a ¢ B because OPRF(a) ¢ B:asaresult a ¢ ANBand a ¢ ANB.
3. a ¢ B because Bob did not query the random oracle on OPRF(a) : here a ¢ AN B; but

the probability that a € AN B is |2£,€| because Alice’s query to random oracle OPRF(a)
is ”freshly” random.

This hybrid differs from the previous hybrid only if case 3 is true which happens with negligible
probability.

Alice is corrupt. In order to simulate Alice’s view in the ideal execution, the simulator does
the following:

Sample OpenSet C [¢] uniformly at random and send (receipt, sidy, 0, Py, P,) to Alice. All the
remaining indices are in EvalSet = [¢] \ OpenSet.

e Extract {Rp, R1,...,Ry—1} from messages {(com, sid,, i, P,, Py, R;) | i € [{]} to Frcom-
e Extract Alice’s encoding E of her input from her request (com, sid,, ¢, P,, Py, E) to FHcom-

Extract ¢ key pairs from (transfer, i, k(()i), k‘gz)) sent by Alice to FcoT. Send acknowledgements

{(receipt, sidp, i, Py, P,) | ¢ € [¢]} on behalf of the Fcor to Alice.

e Let Good = {i | i € [¢] and R; = Extract(k”, k\")}.

If |Good N OpenSet| = |OpenSet| and |Good N EvalSet| < &, the simulator aborts. That is, if all
opened indices are Good and not enough indices in EvalSet are Good, the simulator aborts.
Send input encoding E to Fe,.ps) and learn output A N B where A = Encode™}(E). Now,
simulate Bob’s final protocol message as:

{HE: D) [beanBfu{n

ie{L.“JB\AH}
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where r; & {0,1}2* and

Dy = {(IL? DEvaI(k(()l)7 b, Oﬂ:seti))}iG{EvaISetﬂGood}
U {(Zv DEvaI(kg)v b, Offseti))}iG{EvaISet\Good}

Through a series of hybrids we transform the real protocol execution into a simulated execution
in the ideal world.

e Hybrid 0: We start with the actual protocol interaction where Bob participates with his input
set B.

o Hybrid 1: We define Good = {i | i € [{] and R; = Extract(k:(()i),kgi))} to be the collection of
indices where we can successfully extract the set from the FSS shares. In this hybrid, we abort
if |Good N OpenSet| = |OpenSet| and |Good N EvalSet| < . In Figure 6, we select parameters
|OpenSet| = ¢; and |EvalSet| = ¢5 so that abort occurs with negligible probability, making
this hybrid indistinguishable from the previous hybrid.

e Hybrid 2: In this hybrid, we modify the message sent by Bob in step 8 of the protocol. In
the previous hybrid, the message is defined as:

B={H(: D,) [be AnB}U{H( D) |be B\ 4]

where Dy = {(1, DEvaI(k:ii), b, offset;)) | ¢ € EvalSet}.
For the case b ¢ A: if index i € Good then DEvaI(k((f), b, offset;) # DEvaI(k‘Y), b, offset;) by the
correctness of the underlying p-dFSS scheme. When b ¢ A we can write

DEvaI(kii), a, offset;) = DEvaI(k(()i), b, offset;) @ s; - ¢;

where g; is a characteristic vector that indicates whether 7 is Good or not and s; is Bob’s choice
bit. For Alice to guess OPRF(b) she will have to simultaneously guess Bob’s choice bits for all
indices ¢ € {EvalSet N Good}. From the previous hybrid, we know that |EvalSet N Good| > k,
giving Alice negligible advantage. Therefore, we replace the H outputs for b € B\ A with

uniform outputs r; & {0,1}2* as shown below -

B={H(u D) [beanB}u{n

ie{l,...,]B\A\}}

where D, = {(i, DEval(k{", b, offset;)) | i € EvalSet}.
For the case b € A: if index i € Good then DEval(k{”,b, offset;) = DEval(k\", b, offset;) by
the correctness of the underlying p-dFSS scheme. For all indices i € {EvalSet N Good} Alice

can express DEvaI(k,(j), a, offset;) = DEvaI(k(()i), b, offset;). However, for the small set of indices
i € {EvalSet \ Good} Alice must still guess Bob’s choice bits. We reflect this change in the
message sent by Bob as follows -

{H: D) [veanBhuln

ie{l,...,\B\A|}}
where 7; & {0,1}%F and

Dy = {('La DEvaI(k(()i)v b, Offseti>)}ie{EvaISetﬂGood}
U {(i, DEval (k" b, offset;)) }ic {Evaiset\ Good)
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Communication analysis: We suggest practical instantiations for the various components of
our protocol. The FcoT functionality can be realized by the committed OT construction in Jawurek
et al. [JKO], in which the communication cost of choose, transfer and open is bounded by O(k +1),
where [ is the length of the message. The Fycom functionality can be realized by the homomorphic
commitment protocol of Frederiksen et al. [FJNT16], which supports additive homomorphisms
over any field F. The communication cost for each commit and open is bounded by O(tAlog |F|)
and O(tlog |F|) respectively, where ¢ is the length of batch codes used in their construction and
A is the statistical security parameter. However, for batch invocations of commit and open their
protocol achieves rate ~ 1.

The step-by-step communication cost breakdown of our protocol is as follows:

e Step 1: Communication costs O(k + 1) for sending a commitment to the OpenSet
Step 2: Committing the offsets output by RShare: O(¢log G)
Step 3: transfer and choose COT cost: O(fo), where o is the FSS share size
Step 4: decommitting OpenSet costs O(k)
Step 5: For each element in OpenSet, Alice opens the key pair, and for elements not in
OpenSet she opens the offsets: O(4(o + log|G|))
Step 7: Communication for this step is O(|EvalSet|log |G|)

e Step 8: Bob sends a set of hash values, each of length 2x: total cost O(|B|k), where B is

Bob’s unstructured set

With cut-and-choose parameter ¢ = O(k), the total communication complexity of the protocol is
O(k(o +log|G| + |B))).

5 dFSS constructions

5.1 dFSS from known bFSS constructions

Many known bFSS constructions can be easily transformed into an equivalent dFSS. In this section
we present derandomizable bFSS variants for singletons (point functions), intervals, and fixed-radius
f-balls in d dimensions, with each set including the empty set. The idea for these constructions
is to make RShare output bFSS shares of a random set from the collection. The correctness and
privacy of the underlying bFSS also ensures correctness and privacy of the dFSS. Further if the
Share function of bFSS is invertible - given FSS keys kg and k1 we can output the corresponding
set input to Share, making the dFSS construction extractable.

The universe set U = {0,1,...,2% — 1}¢ = [2¥|? is parameterized by u,d. We will use the
shorthand notation U, 4 to represent the same set throughout this section.

Define PT, 4 to be the family of singleton sets for the universe set U, 4 including the empty
set. Define INT, s to be the family of 1-dimensional modular intervals of length § — i.e., sets of
the form [a,b] = {(a +14) mod 2%|0 < i < §}, where a,b € [2¥] and b = (a + §) mod 2%, including
the empty set. Define BALL,, 45 to be the family of radius-0 {-balls in the domain 4, 4, including
the empty set. Boo(ctr,d) represents a single £, ball of radius § centered at ctr — i.e., all points
within /-distance d of ctr. Similar to the collection of interval functions, the collection BALL,, 4 s
contains f,, balls that wrap naturally around any edge of the d-dimensional universe set. Let
map : Uy g — [2%9] be any bijective mapping.

Theorem 8. Given a strong p-bFSS construction for singleton sets, 1-dimensional interval and
d dimensional intervals with an invertible Share function, there erists a corresponding p-dFSS for

{PTyd,INT5,, BALLs ,, q}-

Its proof can be found in Appendix B.1.
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The best known constructions for collection of sets {PT, 4, INT, s, BALL, 45} [BCGT21, BGI16]
have invertible Share functions - i.e. given the FSS keys, we can efficiently compute the secret shared
set. For the point function construction [BGI16] for example, Eval involves computing a path in
a GGM-PRF like tree, corresponding to the input z. By construction, the two parties can secret
share 1 for each node in the path corresponding to some special point z*, and other nodes secret
share 0. Hence the Extract function can identify z* (defining the singleton set), given both keys
ko, k1, and by identifying the path corresponding to z* in both trees one bit at a time.

From these previous known bFSS constructions [BCG*21, BGI16] and Theorem 8 we have the
following corollaries:

Corollary 9. There exists a 1-dFSS with pseudo-random keys for PT, 4, INT, s and BALL,, 45 with
share sizes O(rkud), O(ku) and O(ku?) respectively.
5.2 Generic Transformations

In this section we present some generic transformations for dFSS.

Theorem 10. Given a 1-dFSS for a collection of sets S with share size o, there exists a 1-dFSS
for the collection S = {S|S € S} with share size o.

This new dFSS can be constructed, by making one of the parties output the complement of
their DEval output for collection S.

For collections Sy, Sa, we define the collection
sum[Sl,SQ] = {51A52 = (Sl \ SQ) U (SQ \ Sl)‘Sl € S1and Sy € 82}
Then we have the following theorem:

Theorem 11. Given a 1-dFSS Fi, Fs for a collection of sets S1,So with share size 01,09 Tespec-
tively, there exists a 1-dFSS sum[Fy, Fy] for the collection sum[Sy, Sa] with share size o1 + o2.

Further note that, if F; and F5 correspond to dFSS for disjoint sets S1 and Sy respectively, then
sum[F, Fy] corresponds to a dFSS for the disjoint union S; U Ss. Further in this paper, we’ll also
use the following shorthand notation:

sum[Fy, Fy, ..., Fy] = sum[Fy,sum[F5, ... sum[F;_1, F{]]]

Both the above theorems follow easily from the derandomizability property of the underlying
dFSS, and from the complement and sum bFSS constructions in [GRS22]. From the same con-
struction we also have that the Eval cost of the sum dFSS would be the sum of the Eval cost of its
component dFSS.

bFSS from dFSS There is a direct transformation of a dFSS scheme for a collection of sets to a
bFSS scheme for the same. A formal description of the construction and the proof of the following
theorem is provided in Appendix B.2.

Theorem 12. Given a p-dFSS for S with share size o, there exists a corresponding p-bFSS con-
struction for & with share size o.
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Concat Technique Given dFSS for two collections Si, Se, this technique gives a dFSS for their
cross product 81 X Ss. Here the simple trick is to just concat the outputs of DEval of the two
dFSS constructions. This is the same technique as the concat technique introduced in [GRS22].
See Appendix B.3 for a more detailed description of the construction and the proof of the following
theorem:

Theorem 13. Given p1-dFSS Fy for S1 with share size o1 and pa-dFSS Fs for So with share size
o9, there exists a (p1 + p2)-dFSS concat[Fy, F»| for 81 x Sy with share size o1 + o9. Furthermore,
if F1 and Fy dFSS have pseudo-random keys, then so does concat[Fy, Fs].

Using this concat technique we can get a dFSS for an £, ball, which can be viewed as a cross
products of d intervals.

Corollary 14. There exists a d-dFSS for BALL, 45 with share size O(kud)

Tensor Technique The point function tensor technique was first introduced by Boyle et al
[BGI16] - where given an FSS for some class of functions F with pseudo-random keys, FSS for
point functions PT, there exists an FSS for the class of functions PT ® F - which contains functions
of the form:

PT®F = {gas | fas € PT,f € F)

fly)  ifr=a
0 otherwise

Yo, f(T,y) = {

In the original construction, we can replace the FSS for F with a dFSS for some structure S to get
a dFSS for the following tensor structure:

PTRS={U\{a} xS|acl,sSecS)}

Theorem 15. Given a p-dFSS F with pseudo-random keys for S with share size o, a strong dFSS
P for PT, with share size O(uk), and a pseudo-random generator, there exists a p-dFSS (P ® F)
for the collection PT @ S with share size O(k(log |U| + o))

In the above construction, if the encoding group of PT,S are Gpt,Ggs respectively, then the
encoding group of PT ® § is Gpt X Ggs. In the following subsection, we’ll also assume this tensor
construction DEval has an auxiliary output, where this output bit corresponds to the output of
just the singleton dFSS P in the tensor construction P ® F. We’ll refer to this modified eval as
DEval***. From our tensor construction, we also get the following result:

Theorem 1. Given a p-dFSS with pseudo-random keys for S with share size o, and a pseudo-
random generator, there exists a p-dFSS for PT®@ S = {{a} x S | a € U,S € S} with share size
O(r(log U] + 7))

This essentially follows from the fact that the tensor construction from Theorem 15 gives an
auxiliary output for the strong dFSS for collection PT- allowing us to take the compliment wrt the
universe U in the first component of the input.

The above dFSS (secret sharing {z} x S) for input (z,y) evaluated to 0 i.e. corresponds to the
element being contained in the secret shared set <= z =« and y € S.
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5.3 An Improved spatial hashing technique

So far we’ve developed strong and weak dFSS schemes for a fixed radius ball in £, metric space.
We’ll use them as building blocks in this section to develop dFSS schemes for union of disjoint n
balls.

Let F be a strong dFSS scheme for a single ball, then the generic transformation sum[F"] =
sum[F, F, ..., F (n times)] can be used to construct a strong dFSS for a set of n disjoint balls from
the same domain. For this trivial construction, the computation cost of Eval would be n times the
Eval cost of a single ball.

Improving on this construction, Garimella et al. [GRS22] introduce a spatial hashing technique,
which gives a bFSS construction for union of n disjoint fixed radius balls in a metric space, where
the Eval cost is 2¢ times the Eval cost for a single ball, with the FSS key size increasing by a factor
of O(49), where d is the number of dimensions in the input domain. Assume the entire input
space is divided into contiguous fixed size grid cells of side length 2§ - where ¢ is the radius of the
input balls. In this spatial hashing construction, we prepare bFSS keys for each cell that intersects
with an input ball, and pack them into an oblivious-key value storage (OKVS) [GPR"21] - giving
the bFSS keys for union of balls. Here the grid coordinate is treated as the OKVS key, and the
corresponding bFSS key is treated as its value. In this construction, we “shatter” each input ball,
across all the 2¢ intersecting grid cells - hence a bFSS key for an input ball is prepared and used
for each of its neighboring cells. This blows up the size of the bFSS keys for the union of balls by
a factor of 2¢. The other factor of 2¢ comes from the fact that we insert 2¢n key-value pairs into
the OKVS.

They key features of the [GRS22| spatial hashing protocol are also presented in Figure 9. It
depicts the “shattering” technique we described pictorially on an example union of five [, balls in
2 dimensions.

Next we’ll introduce an improved spatial hashing construction for union of balls, which has two
fold advantages over the [GRS22] construction:

e We present a dFSS instead of a bFSS scheme scheme for a union of balls. Which makes the
proposed construction applicable for both the malicious and semi-honest structure-aware PSI
setting.

e We avoid the use of the “shattering” technique, where each input ball is secret-shared once
for each neighboring cell. This improves the F'SS key size - giving it just a constant overhead
compared to the trivial sum construction

High level intuition for our Spatial Hashing Construction To construct dFSS for a union
of radius-0 £4.-balls, we first impose a grid structure on the input domain & = [2%]¢ - partitioning
the input space into contiguous d dimensional grid cells, where each cell is an {..-ball of radius §
i.e. each cell is a d dimensional cube with side length 2d.

The dFSS key for both parties in our construction would be a cuckoo table (with 3 hash func-
tions), where each corresponding entry of the two cuckoo tables contain dFSS keys for a single ball.
In particular, we’d want the dFSS for an input ball with center ctr to be located in either of the
following three locations in the cuckoo table: Hp(cell(ctr)), Hy(cell(ctr)) or Ha(cell(ctr)), where H;
is a cuckoo hash function for i € {0, 1,2} and cell function outputs the grid cell containing the input
point. We refer to these grid cells containing input ball centers as active cells. In this construction
we essentially prepare FSS keys for just the active grid cells and pack them in a cuckoo table.

To check if a point x is contained in any of the n input balls, we need to just check if the
neighboring cells of z have a center of an input ball which contain x - since no input ball with center
outside this neighborhood can ever contain z. Let the set of grid cells defining the neighborhood
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Figure 8: Illustration of the construction of Garimella et al. [GRS22] and our improved construction,

for the union of n balls.

of x be n(x). Then given a dFSS F for a single ball, we can define the Eval for a union of balls on

an input point x as follows:

1. First query the cuckoo table for each grid cell in n(z), for each of the three hash functions.
This outputs 3|n(x)| FSS keys of individual balls, which can be arranged into a vector 4.

2. Output sum[F31"®)] Eval(7, z)

This proposed technique of constructing FSS keys for just active cells, and evaluating only in a
neighborhood is also illustrated in Figure 9 for an example input.

Compared to the trivial construction, where sum was used to take the disjoint union of n balls,
in our construction above, we use the sum construction for taking the disjoint union of just the
balls in the neighborhood of x. The derandomizablility of this scheme follows from the fact that
the dFSS keys inserted into the cuckoo table are derandomizable. For this scheme the encoding
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group is G™, where G is the encoding group of a single ball (corresponding to a single entry of the
cuckoo table), and m is the size of the cuckoo table.

Domain reduction optimization For the above mentioned improved spatial hashing construc-
tion, the dFSS key size would be proportional to (log |[i|)? - a factor that comes from the fact that
we assume each input ball is from the domain I/ and from Corollary 9. The input balls however,
are of fixed radius § - implying each input ball would be entirely contained in the neighborhood of
its center. For an {, ball, this neighborhood is precisely a d dimensional cube of side length 64.
We’ll next improve the FSS key size for our spatial hashing construction by reducing the domain
size of each input ball from the universe to just its neighborhood. This would reduce the dFSS key
size, making it proportional to just (log(ﬁé))d instead of (log |U/]).

Let F' be the dFSS for a single ball, and P be a dFSS for point functions. While in the above
proposed spatial hashing construction we entered dFSS keys of a single ball (F) in each cuckoo
entry. In our optimized spatial hashing construction, we’ll put keys of dFSS (P ® F'), where F
corresponds to the dFSS for the input ball (let say at center ctr), and P corresponds to the dFSS
for the point function cell(ctr). We evaluate this dFSS on input (y,z) - where x is an element of
U, and y is any cell in the neighborhood 7(x). Then from Corollary 1 this 1-dFSS outputs 0 if
and only if y = cell(ctr) and x is contained in the ball centered at ctr. Hence, the output of this
modified construction always matches that of the above construction without the domain reduction
optimization as well. Furthermore, now since the dFSS F' is guarded by a point function P - we can
restrict the input domain of F' to just a d dimensional cube of side length 66 (containing the cells
that intersect with the input ball). This is due to the fact the dFSS F' evaluation matter only when
you guess the cell containing the ball at center ctr correct, and otherwise the evaluation outputs
0. Note that in this optimization, we cannot use the sum construction to take the disjoint union
over the neighborhood of x since the input to dFSS (P ® F') is not the same for each cell in the
neighborhood. We illustrate this more clearly in our protocol description.

5.3.1 Formal dFSS Description

While the approach above was described for disjoint union of ¢, balls, we can extend it to other
collections of union of sets as well. We’ll next present some formal definitions to help define these
collections of sets and our proposed dFSS construction for them.

Definition 16. A collection of sets S in universe U = [2%]% is said to be a translatable collection
if for some set S CU, S={t+ S|t eU}, wheret+ S ={t+s|seS}.

Specifically note PT,INT,BALL are all translatable collections. We can define any arbitrary
point of a translatable set to be a representative element (analogous to the “center” of a ball), so
that a translated set can be specified by only the position of the representative element.

Definition 17. For any translatable collection S, an efficient and invertible function rep: S — U
is said to be a representative function for S if rep(t +S) =t + rep(S) for any S € S,t € U.

As an example, for a point function/singleton set {2} we make x the representative, and for an
{~ ball we can define its center to be a representative.

Given a collection of sets S, we define the collection disjoint-union,,(S) to contain a collection
of n disjoint sets from the collection S. More formally we have:

Definition 18. For any collection of sets S. disjoint-union,, (S) = {{Si}icpm) | Si € S, N S; =
0 fori#j}
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We can partition the space U = [2%]¢ into contiguous grid cells, which are d-dimensional £.-
balls of radius . We uniquely label each grid cell by the point contained in it with least distance
from the origin. Define a function cells (parameterized by the grid size) that maps any point in the
universe U to its unique grid cell label. Hence the function cellg1 maps a grid cell label to the set
of points contained in it.

Definition 19. For any vector * = (x1,x2,...,24) € U, define the function that maps a point
to its grid cell label as: cells(z) = |x/25] = (|x1/26],. .., x4/26]). We also define cell;'(x) =
[X1,21 +20) X [x2,22 +20) X ... X [X4, T4 + 20), which maps any grid cell label to the set of points
contained in that grid cell.

Definition 20. Define G(6,u,d) = set of all grid cells = {cell; ' (cell(z)) | x € U}

We next define an active cell, as a grid cell that contains the representative element of some
translatable set from the union of sets. As presented in the high level overview of the technique,
we require each active cell to contain at max a single representative for a set.

Definition 21. For some {Si}ic[n € disjoint-union,,(S), a cell c € G(d,u,d) is termed active, if
rep(S;) € c for some j € [n]. Further we say the disjoint union set {S;};c[n) has unique active
cells if the number of active cells are n.

Next we define the neighborhood 7n(z) of any input x - which includes the set of all grid cells
that could contain the representative of a translatable set that might contain x. We’ll use this set
to define the DEval function.

Definition 22. For some translatable collection S,x € [2%]%, define n(x) = {c € G(6,u,d) | ¢ =
rep(S) and x € S for some S € S}

For example, for collection of sets BALL,, 45, then n(z) contains the cell cell(x) and each of its
neighboring cells; and for collection of sets PT, 4, n(x) is just the singleton set containing cell(x).

Defining Encoding Group Let S be a translatable collection of sets with encoding group Gg,
Gpt be the encoding group for the collection of point functions, and let grid parameter § be set
such that every set in &’ = disjoint-union(S) has unique active cells. Then we’ll define the encoding
group for &' as G = (Gpt x Gg)™, where m would correspond to the size of a 3 hash-function
cuckoo table, used to store n items. Intuitively, each element of this vector encoding is a pair -
where the first element encodes a grid cell, and the second element encodes the representative of
the input set present at that grid cell.
The encode function Encode on input {S;}, € disjoint-union(S) is defined as follows:

1. X < {(cell(rep(S;)), (Encodept(cell(rep(S;)), Encodes(S;))) |1 < i < n}
2. Output cuckoo table T = Cuckoo{} y, y,(X)

By the correctness of cuckoo hashing, for any S € {Si}[n], its encoding is located in one of the
following indexes in table T: Hg(cell(rep(S))), Hi(cell(rep(S))), Ha(cell(rep(S))).
This Encode function is also efficiently invertible as follows:

Encode ™ (T) = {S € S|(c, S) + Encodeg'(T[i]) and c = cell(rep(S)),i € [n]} (1)

For this encoding scheme we formally present a strong dFSS for disjoint union of a collection of
translatable sets in Figure 9.
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Theorem 23. For U = [2¥]¢, Given a strong dFSS for a translatable collection S with share
size o, and for some grid parameter & giving unique active cells, there exists a strong dFSS for
disjoint-union,,(S) with share size O(n(o + kud)).

Proof.
e Correctness: For any input union of sets S* = {S; € S|i € [n]}, and input z € U.

For any ¢ € n(x) and i € {0,1, 2}, define y}dx as the idx" party’s y’ value computed in DEval
for the j = (c, i) iteration of the for-loops. And define y; = y? + yjl.
Then by the correctness of the dFSS P ® F, y; = 0 iff cell ¢ contains the representative of
a translatable set in S* that contains x. The xor of y with y; @ 1, essentially updates the
shared y value between the two parties with the complement of the y; bit. Hence, if ¢ does
not contain the center of an input ball, or if « is not contained in the translatable set with a
representative in ¢ - then the secret shared value of y is not updated. Since all the translatable
sets are disjoint, the value of secret shared y is updated from 0 to 1 only if x is contained in
a translatable set with a representative in its neighborhood. Finally, note we xor with 119 -
ensuring a complement of the final output - i.e. the 1-dFSS outputs 0 only if z is contained
in a translatable set in S*.
if n(x) = {m1,m2,...}. Then the final output secret shared DEval can also be rewritten as

Y(1,0) D Y(n1,1) ©Y(n1,2) D Y(n2,0) D Y(n2,1) DY(22) D - - -

Correctness follows directly from this equation as well.

e Privacy: Given the simulator Sim for the tensor compliment P ® F, and a cuckoo table
of size m, the simulator for disjoint-union,,(S) outputs an m sized vector, where each of its
entries is an independent output of Sim.

e Extractability: This follows directly from the extractability of the tensor dFSS PT ® F.

O

Corollary 24. There exist a 1-dFSS for union of n disjoint £o-balls of radius 6 inUd = {0,1,...,2%—
1}¢ with share size O(nk(ud + (log §)9))

Proof. For union of radius-d balls, we set the grid parameter to J to ensure unique active cells.
For a universe of size 69, from Corollary 9 we get a strong dFSS for BALLgs 45 with share size
O(x(log d)?). The corollary follows from Theorem 23. O

Weak Spatial Hashing We can further optimize the spatial hashing construction for the case
where the translatable sets in the disjoint union are sufficiently “far apart”. Suppose we consider
a disjoint union S* = {S; | ¢ € [n]} of translatable sets, such that for each = € U, n(z) contains at
most a single active cell. We define this collection of sets as sparse-union(S), and its encoding group
and Encode function is the same as the previous spatial hashing construction. For this collection,
we’ll show how to construct dFSS using just a weak dFSS for the translatable collection of sets.
In particular, this construction would give us a weak dFSS for union of fixed radius ¢, balls with
share size being linearly proportional to the dimension d, subject to the constraint that the distance
between each pair of input balls is at least 8 times their radius.

This construction is similar to the previously proposed spatial hashing construction with some
subtle differences which we list next: (as an example here we take the underlying translatable set
to be a ball in some metric space)
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Let m be the size of a 3 hash (Hy, H1, Ha) cuckoo table containing n elements
Given a 1-dFSS F for a translatable structure S and a 1-dFSS P for PT, 4

Extract(1”, ko, k1):

RShare(1%):
ﬁ(v) Size ™ AITAVS Parse kg, k1 as cuckoo encodings
f(?lz ihe [};n I v Initialize empty |ko| sized vector vg

For i € [|ko|]:
vgli] + (P ® F).Extract(kol[i], k1[i])
if vg[i] = L, return L

return vp

(voli], v1[i], vr[i]) + (P ® F).RShare(1*)
return (vg, v1, VR)

DEval(1%,idx,v, z, offset):
y+0
For ¢ € n(x) :
For i € {0,1,2}
y « ((P ® F).DEval(v[H;(c)], (¢, z) — offset[H;(c)]))
// y' for both parties is a secret sharing of 0 iff x is

// contained in a translatable set located in cell ¢

y—y@y o1
// the 1idx xor component is used to take the F'SS complement
return y @ 19

Figure 9: spatial-hashing; construction for the collection of sets disjoint-union(S) with grid size ¢ in
domain U = {0,1,...,2* — 1}4

e Let F be the dFSS for a single ball, and P be a dFSS for point functions. While in the above
spatial hashing construction we entered keys of dFSS (P ® F) in the cuckoo table, where F
corresponds to the dFSS for the input ball (let say at center ctr), and P corresponds to the
dFSS for the point function cell(ctr). In this construction, we’ll instead enter keys for the
tensor construction (P ® F'), which also has an auxiliary DEval output corresponding to the
point function P.

We evaluate this dFSS on input of the form (y,z) - where z is an element of U, and y is any
cell in the neighborhood n(z). Then from Theorem 15 this weak dFSS outputs an all zero
string if and only if y # cell(ctr) or x is contained in the ball centered at ctr.

e The final output of the proposed dFSS on any input x has two components (which are con-
catenated). The first component is 0 if and only if there exists an active cell in n(z) - which
can be computed using the auxiliary output of the (P ® F') dFSS in each entry of the cuckoo
table. The second component is an all zero string if either n(x) = () or if z is not contained in
the ball with center in its neighborhood. This second component is computed directly from
the output of (P ® F') dFSS. Hence, this weak dFSS would output an all zero string only if
n(z) is non-empty and it contains a center of a ball containing x.

The formal description of this weaker spatial hashing construction is given in Figure 10

Theorem 25. Ford ={0,1,...,2" — 1}d, Given p-dFSS for a translatable collection S with share
size o, and for some grid parameter §, there exists a (p + 1)-dFSS for sparse-union,,(S) with share
size O(n(o + kud)).

Using this theorem and the weak dFSS for BALLgs 45 we get a dFSS for a sparse union of ¢
infinity balls with share size that’s linear in d. We define the ¢, distance between a pair of balls
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Let m be the size of a 3 hash (Hy, Hy, H2) cuckoo table containing n elements
Given a p-dFSS F for a translatable structure S and a 1-dFSS P for PT,, 4
Extract(l”, ko, kl):

RShare(17):
ﬁ(v) Size 1 ATTavS Parse kg, k1 as cuckoo encodings
0-° 1 Th Y Initialize empty |ko| sized vector vg
for i € [m]:

For i € [|kol]:
vr[i] < (P ® F).Extract(ko[i], k1[7])
if vg[i] = L, return L

return vp

(vold], v1]i], vrli]) < (P & F').RShare(1%)
return (vg, v1,VR)

DEval(1%,idx,v, =, offset):
y + (0,0)
For c € n(x) :
For i € {0,1,2}
(yo,y1) < ((P ® F).DEval™®(v[H;(c)], (¢, x) — offset[H;(c)]))
// here yq corresponds to the auxiliary output
y <y (yo,y1)
return (y[0] © 1'%)||y[1]

Figure 10: Weak spatial hashing construction for the collection of sets sparse-union(S) with grid
size 6 in domain U = {0,1,...,2% — 1}

in BALLgs 45 to be the distance between their centers. Then we have the following corollary:

Corollary 26. There exists a (d+ 1)-dFSS for the union of n, lx-balls of radius &, with pairwise
distance > 85, inU = {0,1,...,2% — 1}¢, with share size O(knud).

5.4 Discussion on co-domain of Encode ™!

Given a dFSS for collection of sets S with encode function Encode : S —+ G. For each § € S,
we have Encode™ (Encode(S)) = S. In our PSI protocol however, a malicious Alice may com-
mit offsets corresponding to some element in the encoding space ¢ € G. Note that for S €
{PTy4,INT4s5,BALL, 45}, for any g € G, Encode™'(g) € S — i.e., Encode is a bijection for these
collections. Hence for S € {PT, 4,INT4s, BALL, 45} the corrupt party cannot input a set outside
the expected collection.

For union of n disjoint ¢+ balls with encoding function Encode : disjoint-union,,(BALL,, 45) = G
and for any g € G, from Equation 1, we have that Encode_l(g) may contain at most one input ball
for each entry in the cuckoo table. Hence a corrupt party may be able to input a set of at most m
balls in our PSI protocol, where m is the size of the cuckoo table to store n items.
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Appendix

A  Weak Boolean FSS definition

Here we present the original weak boolean FSS formulation from [GRS22] with no false positives.

Definition 27 (bFSS syntax). Let S C 2 denote a family of sets over input domain U, security
parameter k. A 2-party p-bFSS scheme with algorithms (Share,Eval) has the following syntax:
o (ko, k1) < Share(1%,5): is an algorithm with input the security parameter and (the description
of) a set S € S and it outputs key shares (ko, k1).
o Yigx < Eval(1%, idx, kigx, z): is a deterministic algorithm with input security parameter k, party
index idx € {0, 1}, key share kigx and any x € U. It outputs a binary string yiqsx of length p.

Definition 28 (bFSS security). A 2-party p-bFSS scheme (Share, Eval) for S C 24 is secure if is
satisfies the following conditions:
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Given a bFSS F for singleton set with U = [2u4 4 1]

RShare(1%):
Pick random encoding r <—r U
(k(), k‘l) — F.Share(l“, a)
return (ko, k1,7)

DEval(1%,idx, k, offset, x):
Yidx < F.Eval(1%,idx, k, map(z) — offset)
return Yigx

Figure 11: (RShare,DEval) functions of a dFSS for PT,, 4

e Correctness for yes-instances: For every S € S, x € S:

(ko, kl) — Share(l””, S)
Pr|yo®y =0° | yo < Eval(1”,0, ko, x) =1
y1 < Eval(1®,1,kq, )

e Correctness for no-instances: For every set S€ S,z €U\ S:

(k[), ]{71) — Share(l”‘, S)
Pr | yo®y1 #0° | yo « Eval(1%,0, ko, x) =1
y1 < Eval(1%,1,ky, x)

e Privacy: For every set S € S and index idx € {0,1} there exists a simulator Sim such that
the following distributions are computationally indistinguishable in the security parameter:

(ko, k1) < Share(1%,.5)

return Kiqy =, Sim(17, idx)

B dFSS proofs/constructions

B.1 dFSS for singleton sets, intervals and a d-dimensional ball
The construction for the following theorem can be found in Figure 11.

Theorem 8. Given a strong p-bFSS construction for singleton sets, 1-dimensional interval and
d dimensional intervals with an invertible Share function, there exists a corresponding p-dFSS for
{PTya,INT5,, BALLs ,, q}.

Proof. We’ll show how this theorem holds for the class of point functions, but a similar proof would
follow for the other two collections as well.

To encode collection of point functions, we define its encoding group Gpr as [2%¢ + 1]. The
group element 2%¢ would encode the null set. Which helps us define the Encode function as follows:

Encodept({2}) = map(z) for = € U, 4 and Encodept () = 2"

Furthermore, we can define Encode;% using the inverse of map. The proposed construction is
presented in Figure 11. Here the RShare outputs keys for a random singleton set, which is later
derandomized in DEval to a chosen element by using an appropriate offset. Note, here we can
encode a null set as well, by making the offset derandomize the singleton set to {2%¢} - which is
outside the domain of the dFSS. Next we show how each of the dFSS properties are satisfied.
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Given a dFSS F' for some S with encode function Encode

Share(1%, 5 € S):
(ko, k1, R) < F.RShare(1%) Eval(1%, idx, key = (kidx, offset), z):
offset = Encode(S) — R return F.DEval(1%,idx, kigx, offset, x)
return ((ko, offset), (k, offset))

Figure 12: (Share,Eval) of a bFSS for a collection of sets given a dFSS F' for the same structure

e Correctness: For any z,2* € PT, 4, and offset offset = Encodept(z*) — r, define yigx to
be F.Eval(1%,idx, k, map(z) — offset). Then yo @ y1 = 1 <= map(z) = map(z*) by the
correctness of the underlying bFSS scheme, and else yg ® y1 = 1.

If the underlying bFSS has a correctness error - in the sense that the keys kg, k1 evaluate to a
null set with negligible probability, then the dFSS would give incorrect output for the element
x* if its not (). This leads to a negligible error for a yes-instance of this dFSS. This negligible
error does arise in point function constructions in [BCGT21, BGI16], which we’ll assume in
this work.

For a no-instance of this dFSS, there is never any error in the output. Since the output yo Py,
is always zero when input x # z*.

e Security: This follows directly from the privacy of the underlying bFSS, and by the fact that
r acts as a one-time in the offset Encode(z*) — r.

e Extractability: The Extract functions outputs the secret shared singleton element r, given
the two keys ko, k1. It can be constructed using the invertible Share function as follows:

Extract(ko, k1) = Encode(Share ™ (1%, ko, k1))

Similarly a bFSS for 1 dimensional interval and d dimensional fixed radius ¢, can give us a
corresponding dFSS by “reducing the domain size” to ensure a null set can be encoded by a set
outside the specified domain of dFSS.

O

B.2 DbFSS from dFSS

Theorem 12. Given a p-dFSS for S with share size o, there exists a corresponding p-bFSS con-
struction for 8 with share size o.

Proof. This construction is presented in Figure 12.
e Correctness: The term ;4. ¢ 1y Eval(idx, (kiax, Encode(S)—R), ) = 4. 0,13 Eval(idx, kigx, Encode(S)—
R, x). Hence this follows directly from the correctness definition of dFSS.
e Security: The simulator for the bFSS simply runs the simulator for the dFSS.
]

B.3 concat

Theorem 13. Given p1-dFSS Fy for 81 with share size o1 and py-dFSS Fs for So with share size
o9, there exists a p1 + p2-dFSS concat[F, Fy| for S8 x Sy with share size o1 + o9. Furthermore, if
F1 and Fy dFSS have pseduo-random keys, then so does concat[Fy, Fs].
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RShare(1%):
Initialize ko, k1, R as empty associated arrays  Extract(1”, ko, k1):
(kol0], k1[0], R[0]) < F.RShare(1%) return (Fy.Extract(17%, ko[0],k1[0]),
(ko[1], k1[1], R[1]) <— F>.RShare(1") Fy.Extract(1%, ko[1],k1[1]))
return (ko, k1, R)

DEval(1%,idx,k;gx, offset, z):
y1 < F,.DEval(1¥,idx, kigc[0], offset[0], )
y2 < F.DEval(17idx,k;gx[1], offset[1], x)
return y1ln

Figure 13: dFSS for cross product S x Sy given dFSS for 57 and S5

Proof. The construction is presented in Figure 13. Given encode functions Encode; : §; — G and
Encodey : Sy — Gy for dFSS F) and Fh respectively, we define encode function for concat [Fi, Fb]
Encode : &1 X Sy — Gy x Gy as:

Encode(S1, S2) = (Encode; (S1), Encodes(.S2))

Note that this Encode function is efficiently invertible if the two component Encode functions are.
Encodings with respect to the new Encode function form a group which is a direct product of the
groups for the component FSS.

e Correctness: The correctness of F' = concat[F}, F5] reduces to the correctness of F} and Fb.
The first ki bits of the term y = 3 7y, c 1 1y F-DEval(idx, (kigx , Encode(S1, S2)—(R1, Rp)), (#,y))
equal ) i, e 0.1y F1-Eval(idx, (kiax, Encode(S1) — R1), ) and the last k2 bit of y equal 34,10 13
Fy.Eval(idx, (kigx, Encode(S2) — Rz), ). Hence, y = 0¥1+%2 for (z,y) € S x So. And if 2 ¢ Sy,
the first k; bits are not all zero bits with probability at least pi, and if x € S5, the last ko
bits are not all zero bits with probability at least ps.

e Security: The simulator Sim for concat[F}, F»| invokes the simulators for F; and Fy, which
output (ko, offsetg) and (k1, offset;). Then Sim outputs ((ko, k1), (offseto, offset;)).

e Extractability: This is reduced to the extractability property of the two underlying dFSS

Fy and Fy as shown in Figure 13.
O
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